6,111 research outputs found

    Ordered Measurements of Permutationally-Symmetric Qubit Strings

    Full text link
    We show that any sequence of measurements on a permutationally-symmetric (pure or mixed) multi-qubit string leaves the unmeasured qubit substring also permutationally-symmetric. In addition, we show that the measurement probabilities for an arbitrary sequence of single-qubit measurements are independent of how many unmeasured qubits have been lost prior to the measurement. Our results are valuable for quantum information processing of indistinguishable particles by post-selection, e.g. in cases where the results of an experiment are discarded conditioned upon the occurrence of a given event such as particle loss. Furthermore, our results are important for the design of adaptive-measurement strategies, e.g. a series of measurements where for each measurement instance, the measurement basis is chosen depending on prior measurement results.Comment: 13 page

    Measurements at low energies of the polarization-transfer coefficient Kyy' for the reaction 3H(p,n)3He at 0 degrees

    Full text link
    Measurements of the transverse polarization coefficient Kyy' for the reaction 3H(p,n)3He are reported for outgoing neutron energies of 1.94, 5.21, and 5.81 MeV. This reaction is important both as a source of polarized neutrons for nuclear physics experiments, and as a test of theoretical descriptions of the nuclear four-body system. Comparison is made to previous measurements, confirming the 3H(p,n)3He reaction can be used as a polarized neutron source with the polarization known to an accuracy of approximately 5%. Comparison to R-matrix theory suggests that the sign of the 3F3 phase-shift parameter is incorrect. Changing the sign of this parameter dramatically improves the agreement between theory and experiment.Comment: 12 pages, RevTeX, 5 eps figures, submitted to Phys. Rev.

    Block synchronization for quantum information

    Get PDF
    Locating the boundaries of consecutive blocks of quantum information is a fundamental building block for advanced quantum computation and quantum communication systems. We develop a coding theoretic method for properly locating boundaries of quantum information without relying on external synchronization when block synchronization is lost. The method also protects qubits from decoherence in a manner similar to conventional quantum error-correcting codes, seamlessly achieving synchronization recovery and error correction. A family of quantum codes that are simultaneously synchronizable and error-correcting is given through this approach.Comment: 7 pages, no figures, final accepted version for publication in Physical Review

    Reliability-based serviceability limit state design for immediate settlement of spread footings on clay

    Get PDF
    AbstractWhile many spread footings constructed on clayey soils are designed using consolidation settlement analyses for the serviceability limit state (SLS), immediate settlement, or undrained displacement, of the footing may also contribute a significant portion of the total and/or differential settlement. Owing to possible magnitudes in immediate settlement, and with regard to stress history, assessment of the contribution of immediate settlement comprises an essential task for the understanding of the performance of a foundation system. This study proposes a simple reliability-based design (RBD) procedure for assessing the allowable immediate displacement of a spread footing supported on clay in consideration of a desired serviceability limit state. A relationship between the traditional spread footing bearing capacity equation and slope tangent capacity is established, then incorporated into a bivariate normalized bearing pressure–displacement model to estimate the mobilized resistance associated with a given displacement. The model was calibrated using a high quality database of full-scale loading tests compiled from various sources. The loading test data was used to characterize the uncertainty associated with the model and incorporated into an appropriate reliability-based performance function. Monte Carlo simulations were then used to calibrate a resistance factor with consideration of the uncertainty in the bearing pressure–displacement model, bearing capacity, applied bearing pressure, allowable displacement, and footing width. An example is provided to illustrate the application of the proposed procedure to estimate the bearing pressure for an allowable immediate displacement of a footing at the targeted probability and serviceability limit state

    NP-hardness of decoding quantum error-correction codes

    Full text link
    Though the theory of quantum error correction is intimately related to the classical coding theory, in particular, one can construct quantum error correction codes (QECCs) from classical codes with the dual containing property, this does not necessarily imply that the computational complexity of decoding QECCs is the same as their classical counterparts. Instead, decoding QECCs can be very much different from decoding classical codes due to the degeneracy property. Intuitively, one expect degeneracy would simplify the decoding since two different errors might not and need not be distinguished in order to correct them. However, we show that general quantum decoding problem is NP-hard regardless of the quantum codes being degenerate or non-degenerate. This finding implies that no considerably fast decoding algorithm exists for the general quantum decoding problems, and suggests the existence of a quantum cryptosystem based on the hardness of decoding QECCs.Comment: 5 pages, no figure. Final version for publicatio

    Quantum Capacity Approaching Codes for the Detected-Jump Channel

    Full text link
    The quantum channel capacity gives the ultimate limit for the rate at which quantum data can be reliably transmitted through a noisy quantum channel. Degradable quantum channels are among the few channels whose quantum capacities are known. Given the quantum capacity of a degradable channel, it remains challenging to find a practical coding scheme which approaches capacity. Here we discuss code designs for the detected-jump channel, a degradable channel with practical relevance describing the physics of spontaneous decay of atoms with detected photon emission. We show that this channel can be used to simulate a binary classical channel with both erasures and bit-flips. The capacity of the simulated classical channel gives a lower bound on the quantum capacity of the detected-jump channel. When the jump probability is small, it almost equals the quantum capacity. Hence using a classical capacity approaching code for the simulated classical channel yields a quantum code which approaches the quantum capacity of the detected-jump channel

    Matroids and Quantum Secret Sharing Schemes

    Full text link
    A secret sharing scheme is a cryptographic protocol to distribute a secret state in an encoded form among a group of players such that only authorized subsets of the players can reconstruct the secret. Classically, efficient secret sharing schemes have been shown to be induced by matroids. Furthermore, access structures of such schemes can be characterized by an excluded minor relation. No such relations are known for quantum secret sharing schemes. In this paper we take the first steps toward a matroidal characterization of quantum secret sharing schemes. In addition to providing a new perspective on quantum secret sharing schemes, this characterization has important benefits. While previous work has shown how to construct quantum secret sharing schemes for general access structures, these schemes are not claimed to be efficient. In this context the present results prove to be useful; they enable us to construct efficient quantum secret sharing schemes for many general access structures. More precisely, we show that an identically self-dual matroid that is representable over a finite field induces a pure state quantum secret sharing scheme with information rate one

    Overview of the Langley subsonic research effort on SCR configuration

    Get PDF
    Recent advances achieved in the subsonic aerodynamics of low aspect ratio, highly swept wing designs are summarized. The most significant of these advances was the development of leading edge deflection concepts which effectively reduce leading edge flow separation. The improved flow attachment results in substantial improvements in low speed performance, significant delay of longitudinal pitch up, increased trailing edge flap effectiveness, and increased lateral control capability. Various additional theoretical and/or experimental studies are considered which, in conjunction with the leading edge deflection studies, form the basis for future subsonic research effort

    High-Sensitivity Measurement of 3He-4He Isotopic Ratios for Ultracold Neutron Experiments

    Get PDF
    Research efforts ranging from studies of solid helium to searches for a neutron electric dipole moment require isotopically purified helium with a ratio of 3He to 4He at levels below that which can be measured using traditional mass spectroscopy techniques. We demonstrate an approach to such a measurement using accelerator mass spectroscopy, reaching the 10e-14 level of sensitivity, several orders of magnitude more sensitive than other techniques. Measurements of 3He/4He in samples relevant to the measurement of the neutron lifetime indicate the need for substantial corrections. We also argue that there is a clear path forward to sensitivity increases of at least another order of magnitude.Comment: 11 pages, 10 figure
    corecore